Parallel Collections: Data Parallelism
Introduction
Parallel collections in Scala provide an elegant way to leverage multi-core processors for data-parallel computations. By simply adding .par
to most collection operations, you can automatically distribute work across multiple cores, significantly improving performance for CPU-intensive tasks.
This lesson will teach you how to use parallel collections effectively, understand when parallelization helps, and avoid common pitfalls while building high-performance applications.
Understanding Parallel Collections
Basic Parallel Operations
import scala.collection.parallel.CollectionConverters._
// Converting collections to parallel
val numbers = (1 to 1000000).toList
val parallelNumbers = numbers.par
println(s"Original collection type: ${numbers.getClass.getSimpleName}")
println(s"Parallel collection type: ${parallelNumbers.getClass.getSimpleName}")
// Timing helper function
def timeOperation[T](name: String)(operation: => T): T = {
val start = System.nanoTime()
val result = operation
val end = System.nanoTime()
println(f"$name: ${(end - start) / 1e6}%.2f ms")
result
}
// CPU-intensive operation for demonstration
def expensiveFunction(n: Int): Int = {
var result = n
for (_ <- 1 to 1000) {
result = (result * 1.1).toInt
}
result
}
// Compare sequential vs parallel performance
val data = (1 to 100000).toList
timeOperation("Sequential map") {
val result = data.map(expensiveFunction)
result.length
}
timeOperation("Parallel map") {
val result = data.par.map(expensiveFunction)
result.length
}
// Parallel filter operations
timeOperation("Sequential filter") {
val result = numbers.filter(_ % 17 == 0)
result.length
}
timeOperation("Parallel filter") {
val result = numbers.par.filter(_ % 17 == 0)
result.length
}
// Parallel reduce operations
timeOperation("Sequential sum") {
numbers.sum
}
timeOperation("Parallel sum") {
numbers.par.sum
}
// Custom parallel reduce
timeOperation("Sequential reduce") {
numbers.reduce(_ + _)
}
timeOperation("Parallel reduce") {
numbers.par.reduce(_ + _)
}
// Parallel foreach (for side effects)
import java.util.concurrent.atomic.AtomicInteger
val counter = new AtomicInteger(0)
timeOperation("Sequential foreach") {
data.foreach(_ => counter.incrementAndGet())
}
counter.set(0)
timeOperation("Parallel foreach") {
data.par.foreach(_ => counter.incrementAndGet())
}
println(s"Final counter value: ${counter.get()}")
// Parallel find operations
val target = 567890
timeOperation("Sequential find") {
numbers.find(_ == target)
}
timeOperation("Parallel find") {
numbers.par.find(_ == target)
}
// Parallel exists and forall
timeOperation("Sequential exists") {
numbers.exists(_ > 999000)
}
timeOperation("Parallel exists") {
numbers.par.exists(_ > 999000)
}
timeOperation("Sequential forall") {
numbers.forall(_ > 0)
}
timeOperation("Parallel forall") {
numbers.par.forall(_ > 0)
}
Parallel Collection Types
// Different parallel collection types
val list = List(1, 2, 3, 4, 5)
val vector = Vector(1, 2, 3, 4, 5)
val array = Array(1, 2, 3, 4, 5)
val range = (1 to 5)
val set = Set(1, 2, 3, 4, 5)
val map = Map("a" -> 1, "b" -> 2, "c" -> 3)
// Converting to parallel collections
val parList = list.par
val parVector = vector.par
val parArray = array.par
val parRange = range.par
val parSet = set.par
val parMap = map.par
println("Parallel collection types:")
println(s"Parallel List: ${parList.getClass.getSimpleName}")
println(s"Parallel Vector: ${parVector.getClass.getSimpleName}")
println(s"Parallel Array: ${parArray.getClass.getSimpleName}")
println(s"Parallel Range: ${parRange.getClass.getSimpleName}")
println(s"Parallel Set: ${parSet.getClass.getSimpleName}")
println(s"Parallel Map: ${parMap.getClass.getSimpleName}")
// Converting back to sequential
val backToSeq = parList.seq
println(s"Back to sequential: ${backToSeq.getClass.getSimpleName}")
// Parallel string operations
val text = "The quick brown fox jumps over the lazy dog " * 10000
val words = text.split("\\s+").toVector
timeOperation("Sequential word processing") {
words
.filter(_.length > 3)
.map(_.toUpperCase)
.groupBy(_.head)
.view.mapValues(_.length)
.toMap
.size
}
timeOperation("Parallel word processing") {
words.par
.filter(_.length > 3)
.map(_.toUpperCase)
.groupBy(_.head)
.view.mapValues(_.length)
.toMap
.size
}
// Parallel matrix operations
case class Matrix(data: Vector[Vector[Double]]) {
def +(other: Matrix): Matrix = {
Matrix(
data.zip(other.data).par.map { case (row1, row2) =>
row1.zip(row2).map { case (a, b) => a + b }
}.seq
)
}
def *(scalar: Double): Matrix = {
Matrix(
data.par.map(row => row.map(_ * scalar)).seq
)
}
def transpose: Matrix = {
Matrix(
data.head.indices.par.map { col =>
data.map(_(col))
}.seq.toVector
)
}
}
// Create test matrices
val size = 500
val matrix1 = Matrix(
Vector.fill(size)(Vector.fill(size)(scala.util.Random.nextDouble()))
)
val matrix2 = Matrix(
Vector.fill(size)(Vector.fill(size)(scala.util.Random.nextDouble()))
)
timeOperation("Matrix addition") {
val result = matrix1 + matrix2
result.data.length
}
timeOperation("Matrix scalar multiplication") {
val result = matrix1 * 2.5
result.data.length
}
timeOperation("Matrix transpose") {
val result = matrix1.transpose
result.data.length
}
// Parallel groupBy operations
case class Student(name: String, grade: Int, subject: String, score: Double)
val students = (1 to 10000).map { i =>
Student(
s"Student$i",
(i % 4) + 9, // Grades 9-12
List("Math", "Science", "English", "History")(i % 4),
50 + scala.util.Random.nextDouble() * 50 // Scores 50-100
)
}.toVector
timeOperation("Sequential groupBy grade") {
students.groupBy(_.grade).view.mapValues(_.length).toMap
}
timeOperation("Parallel groupBy grade") {
students.par.groupBy(_.grade).view.mapValues(_.length).toMap
}
// Advanced parallel aggregations
timeOperation("Sequential grade analysis") {
students
.groupBy(_.subject)
.view.mapValues { subjectStudents =>
val scores = subjectStudents.map(_.score)
Map(
"average" -> scores.sum / scores.length,
"max" -> scores.max,
"min" -> scores.min,
"count" -> scores.length
)
}.toMap
}
timeOperation("Parallel grade analysis") {
students.par
.groupBy(_.subject)
.view.mapValues { subjectStudents =>
val scores = subjectStudents.map(_.score)
Map(
"average" -> scores.sum / scores.length,
"max" -> scores.max,
"min" -> scores.min,
"count" -> scores.length
)
}.toMap
}
Configuring Parallelism
Task Support and Thread Pools
import scala.collection.parallel.{ForkJoinTaskSupport, ExecutorServiceTaskSupport}
import java.util.concurrent.{ForkJoinPool, Executors}
// Default parallelism level
val defaultParCollection = (1 to 1000).par
println(s"Default parallelism level: ${defaultParCollection.tasksupport.parallelismLevel}")
// Custom ForkJoinPool
val customPool = new ForkJoinPool(8) // 8 threads
val customParCollection = (1 to 1000).par
customParCollection.tasksupport = new ForkJoinTaskSupport(customPool)
println(s"Custom parallelism level: ${customParCollection.tasksupport.parallelismLevel}")
// Timing with different parallelism levels
def testParallelismLevel(level: Int, data: Vector[Int]): Unit = {
val pool = new ForkJoinPool(level)
val parCollection = data.par
parCollection.tasksupport = new ForkJoinTaskSupport(pool)
val time = timeOperation(s"Parallelism level $level") {
parCollection.map(expensiveFunction).length
}
pool.shutdown()
}
val testData = (1 to 10000).toVector
// Test different parallelism levels
List(1, 2, 4, 8, 16).foreach(level => testParallelismLevel(level, testData))
// Using ExecutorService instead of ForkJoinPool
val executorService = Executors.newFixedThreadPool(4)
val executorParCollection = testData.par
executorParCollection.tasksupport = new ExecutorServiceTaskSupport(executorService)
timeOperation("ExecutorService TaskSupport") {
executorParCollection.map(x => x * x).length
}
executorService.shutdown()
// Configuring threshold for parallel operations
class ConfigurableParallelCollection[T](data: Vector[T]) {
def mapWithThreshold[R](f: T => R, threshold: Int): Vector[R] = {
if (data.length < threshold) {
data.map(f)
} else {
data.par.map(f).seq
}
}
def filterWithThreshold(p: T => Boolean, threshold: Int): Vector[T] = {
if (data.length < threshold) {
data.filter(p)
} else {
data.par.filter(p).seq
}
}
}
val configurableCollection = new ConfigurableParallelCollection((1 to 1000).toVector)
timeOperation("Small threshold (sequential)") {
configurableCollection.mapWithThreshold(_ * 2, threshold = 10000).length
}
timeOperation("Large threshold (parallel)") {
configurableCollection.mapWithThreshold(_ * 2, threshold = 100).length
}
// Dynamic parallelism based on system resources
object AdaptiveParallelism {
val availableProcessors = Runtime.getRuntime.availableProcessors()
def createOptimalParallelCollection[T](data: Vector[T]): Vector[T] = {
val optimalThreads = math.max(2, availableProcessors - 1) // Leave one core for OS
val pool = new ForkJoinPool(optimalThreads)
val parData = data.par
parData.tasksupport = new ForkJoinTaskSupport(pool)
parData.seq // Return the configured parallel collection
}
def processWithAdaptiveParallelism[T, R](
data: Vector[T],
operation: T => R,
minSizeForParallel: Int = 1000
): Vector[R] = {
if (data.length < minSizeForParallel) {
data.map(operation)
} else {
val parData = data.par
parData.tasksupport = new ForkJoinTaskSupport(
new ForkJoinPool(availableProcessors)
)
parData.map(operation).seq
}
}
}
println(s"Available processors: ${AdaptiveParallelism.availableProcessors}")
val largeDataset = (1 to 50000).toVector
timeOperation("Adaptive parallel processing") {
AdaptiveParallelism.processWithAdaptiveParallelism(
largeDataset,
(x: Int) => math.sqrt(x.toDouble).toInt
).length
}
// Nested parallelism considerations
def nestedParallelOperation(data: Vector[Vector[Int]]): Vector[Vector[Int]] = {
// Outer parallelism
data.par.map { innerVector =>
// Inner parallelism - be careful with nested parallelism
if (innerVector.length > 1000) {
innerVector.par.map(_ * 2).seq
} else {
innerVector.map(_ * 2)
}
}.seq
}
val nestedData = Vector.fill(100)(Vector.fill(1000)(scala.util.Random.nextInt(1000)))
timeOperation("Nested parallel operation") {
nestedParallelOperation(nestedData).length
}
// Memory considerations with parallel collections
def memoryEfficientParallelProcessing[T, R](
data: Vector[T],
operation: T => R,
chunkSize: Int = 10000
): Vector[R] = {
data.grouped(chunkSize).map { chunk =>
chunk.par.map(operation).seq
}.flatten.toVector
}
val hugeDataset = (1 to 100000).toVector
timeOperation("Memory-efficient parallel processing") {
memoryEfficientParallelProcessing(
hugeDataset,
(x: Int) => expensiveFunction(x),
chunkSize = 5000
).length
}
When to Use Parallel Collections
Performance Analysis and Guidelines
// Measuring scalability
def measureScalability[T](
data: Vector[Int],
operation: Int => T,
maxThreads: Int = 16
): Unit = {
println(s"Scalability analysis for ${data.length} elements:")
println("Threads\tTime (ms)\tSpeedup\tEfficiency")
// Sequential baseline
val sequentialTime = timeOperation("Sequential baseline") {
data.map(operation)
}
(1 to maxThreads by 2).foreach { threads =>
val pool = new ForkJoinPool(threads)
val parData = data.par
parData.tasksupport = new ForkJoinTaskSupport(pool)
val parallelTime = {
val start = System.nanoTime()
parData.map(operation)
val end = System.nanoTime()
(end - start) / 1e6
}
val speedup = sequentialTime / parallelTime
val efficiency = speedup / threads
println(f"$threads\t$parallelTime%.2f\t\t$speedup%.2f\t$efficiency%.2f")
pool.shutdown()
}
}
// Test with CPU-intensive operation
println("CPU-intensive operation scalability:")
measureScalability((1 to 20000).toVector, expensiveFunction)
// Test with less CPU-intensive operation
println("\nSimple operation scalability:")
measureScalability((1 to 100000).toVector, (x: Int) => x * x + 1)
// Guidelines for when to use parallel collections
object ParallelCollectionGuidelines {
// 1. CPU-intensive operations benefit most
def cpuIntensiveExample(): Unit = {
val data = (1 to 50000).toVector
// Good candidate: complex mathematical operations
timeOperation("Sequential: Complex math") {
data.map(n => math.pow(math.sin(n), 2) + math.cos(n)).length
}
timeOperation("Parallel: Complex math") {
data.par.map(n => math.pow(math.sin(n), 2) + math.cos(n)).length
}
}
// 2. Simple operations may not benefit
def simpleOperationExample(): Unit = {
val data = (1 to 1000000).toVector
// Poor candidate: simple operations with overhead
timeOperation("Sequential: Simple increment") {
data.map(_ + 1).length
}
timeOperation("Parallel: Simple increment") {
data.par.map(_ + 1).length
}
}
// 3. I/O operations are usually not suitable
def ioOperationExample(): Unit = {
val urls = (1 to 100).map(i => s"http://example.com/api/$i").toVector
// Not suitable: I/O bound operations
def simulateHttpCall(url: String): String = {
Thread.sleep(10) // Simulate network latency
s"Response from $url"
}
timeOperation("Sequential: I/O simulation") {
urls.map(simulateHttpCall).length
}
timeOperation("Parallel: I/O simulation") {
urls.par.map(simulateHttpCall).length
}
}
// 4. Data size matters
def dataSizeExample(): Unit = {
val sizes = List(100, 1000, 10000, 100000)
sizes.foreach { size =>
val data = (1 to size).toVector
println(s"\nData size: $size")
timeOperation("Sequential") {
data.map(expensiveFunction).length
}
timeOperation("Parallel") {
data.par.map(expensiveFunction).length
}
}
}
// 5. Shared mutable state is problematic
def sharedStateExample(): Unit = {
val data = (1 to 100000).toVector
// Problematic: shared mutable state
var sum = 0
timeOperation("Sequential with shared state") {
data.foreach(sum += _)
}
println(s"Sequential sum: $sum")
// This will produce incorrect results!
sum = 0
timeOperation("Parallel with shared state (WRONG!)") {
data.par.foreach(sum += _)
}
println(s"Parallel sum (incorrect): $sum")
// Correct approach: use reduce or atomic operations
timeOperation("Parallel with reduce (CORRECT)") {
val correctSum = data.par.reduce(_ + _)
println(s"Parallel sum (correct): $correctSum")
}
}
}
println("\n=== Parallel Collection Guidelines ===")
println("\n1. CPU-intensive operations:")
ParallelCollectionGuidelines.cpuIntensiveExample()
println("\n2. Simple operations:")
ParallelCollectionGuidelines.simpleOperationExample()
println("\n3. I/O operations:")
ParallelCollectionGuidelines.ioOperationExample()
println("\n4. Data size impact:")
ParallelCollectionGuidelines.dataSizeExample()
println("\n5. Shared state problems:")
ParallelCollectionGuidelines.sharedStateExample()
// Performance profiling helper
class ParallelPerformanceProfiler {
def profile[T, R](
data: Vector[T],
operation: T => R,
name: String = "Operation"
): Unit = {
println(s"\n=== Profiling: $name ===")
println(s"Data size: ${data.length}")
// Memory usage before
val runtime = Runtime.getRuntime
runtime.gc()
val memoryBefore = runtime.totalMemory() - runtime.freeMemory()
// Sequential execution
val seqTime = {
val start = System.nanoTime()
data.map(operation)
val end = System.nanoTime()
(end - start) / 1e6
}
runtime.gc()
val memoryAfterSeq = runtime.totalMemory() - runtime.freeMemory()
// Parallel execution
val parTime = {
val start = System.nanoTime()
data.par.map(operation)
val end = System.nanoTime()
(end - start) / 1e6
}
runtime.gc()
val memoryAfterPar = runtime.totalMemory() - runtime.freeMemory()
// Results
val speedup = seqTime / parTime
val efficiency = speedup / Runtime.getRuntime.availableProcessors()
println(f"Sequential time: $seqTime%.2f ms")
println(f"Parallel time: $parTime%.2f ms")
println(f"Speedup: $speedup%.2fx")
println(f"Efficiency: ${efficiency * 100}%.1f%%")
println(f"Memory (sequential): ${(memoryAfterSeq - memoryBefore) / 1024 / 1024}%.1f MB")
println(f"Memory (parallel): ${(memoryAfterPar - memoryAfterSeq) / 1024 / 1024}%.1f MB")
if (speedup > 1.2) {
println("✓ Good parallelization candidate")
} else if (speedup > 0.8) {
println("⚠ Marginal benefit from parallelization")
} else {
println("✗ Poor parallelization candidate")
}
}
}
val profiler = new ParallelPerformanceProfiler()
// Profile different operations
profiler.profile(
(1 to 10000).toVector,
(x: Int) => math.sqrt(x * x + 1),
"Square root calculation"
)
profiler.profile(
(1 to 100000).toVector,
(x: Int) => x.toString.length,
"String conversion"
)
profiler.profile(
(1 to 5000).toVector,
expensiveFunction,
"Expensive computation"
)
Advanced Parallel Patterns
Custom Parallel Algorithms
// Parallel merge sort implementation
object ParallelMergeSort {
def mergeSort[T](arr: Array[T])(implicit ord: Ordering[T]): Array[T] = {
if (arr.length <= 1) arr
else {
val mid = arr.length / 2
val (left, right) = arr.splitAt(mid)
// Parallel execution of recursive calls
val sortedLeft = if (left.length > 1000) {
// Use parallel for large arrays
Future { mergeSort(left) }(scala.concurrent.ExecutionContext.global)
} else {
scala.concurrent.Future.successful(mergeSort(left))
}
val sortedRight = if (right.length > 1000) {
Future { mergeSort(right) }(scala.concurrent.ExecutionContext.global)
} else {
scala.concurrent.Future.successful(mergeSort(right))
}
// Merge results
import scala.concurrent.Await
import scala.concurrent.duration._
merge(Await.result(sortedLeft, 10.seconds), Await.result(sortedRight, 10.seconds))
}
}
private def merge[T](left: Array[T], right: Array[T])(implicit ord: Ordering[T]): Array[T] = {
val result = new Array[T](left.length + right.length)(scala.reflect.ClassTag(left.getClass.getComponentType))
var i, j, k = 0
while (i < left.length && j < right.length) {
if (ord.lteq(left(i), right(j))) {
result(k) = left(i)
i += 1
} else {
result(k) = right(j)
j += 1
}
k += 1
}
while (i < left.length) {
result(k) = left(i)
i += 1
k += 1
}
while (j < right.length) {
result(k) = right(j)
j += 1
k += 1
}
result
}
}
// Test parallel merge sort
val unsortedArray = Array.fill(50000)(scala.util.Random.nextInt(100000))
timeOperation("Parallel merge sort") {
val sorted = ParallelMergeSort.mergeSort(unsortedArray.clone())
sorted.length
}
timeOperation("Built-in sort") {
val sorted = unsortedArray.clone()
scala.util.Sorting.quickSort(sorted)
sorted.length
}
// Parallel matrix multiplication
class ParallelMatrix(val data: Array[Array[Double]]) {
val rows: Int = data.length
val cols: Int = if (rows > 0) data(0).length else 0
def *(other: ParallelMatrix): ParallelMatrix = {
require(this.cols == other.rows, "Matrix dimensions don't match")
val result = Array.ofDim[Double](this.rows, other.cols)
// Parallel computation of result matrix
(0 until this.rows).par.foreach { i =>
(0 until other.cols).par.foreach { j =>
result(i)(j) = (0 until this.cols).map { k =>
this.data(i)(k) * other.data(k)(j)
}.sum
}
}
new ParallelMatrix(result)
}
def +(other: ParallelMatrix): ParallelMatrix = {
require(this.rows == other.rows && this.cols == other.cols, "Matrix dimensions don't match")
val result = Array.ofDim[Double](rows, cols)
(0 until rows).par.foreach { i =>
(0 until cols).foreach { j =>
result(i)(j) = this.data(i)(j) + other.data(i)(j)
}
}
new ParallelMatrix(result)
}
}
// Test parallel matrix operations
val matrix1 = new ParallelMatrix(Array.fill(200, 200)(scala.util.Random.nextDouble()))
val matrix2 = new ParallelMatrix(Array.fill(200, 200)(scala.util.Random.nextDouble()))
timeOperation("Parallel matrix addition") {
val result = matrix1 + matrix2
result.rows
}
timeOperation("Parallel matrix multiplication") {
val result = matrix1 * matrix2
result.rows
}
// Parallel search algorithms
object ParallelSearch {
def parallelBinarySearch[T](
arr: Array[T],
target: T,
threshold: Int = 10000
)(implicit ord: Ordering[T]): Option[Int] = {
def search(start: Int, end: Int): Option[Int] = {
if (start > end) None
else if (end - start < threshold) {
// Use sequential search for small ranges
sequentialBinarySearch(arr, target, start, end)
} else {
val mid = start + (end - start) / 2
val midValue = arr(mid)
if (ord.equiv(midValue, target)) Some(mid)
else if (ord.lt(midValue, target)) {
// Search right half in parallel
import scala.concurrent.{Future, ExecutionContext}
implicit val ec: ExecutionContext = ExecutionContext.global
val leftFuture = Future { search(start, mid - 1) }
val rightResult = search(mid + 1, end)
rightResult.orElse {
import scala.concurrent.Await
import scala.concurrent.duration._
Await.result(leftFuture, 5.seconds)
}
} else {
search(start, mid - 1)
}
}
}
search(0, arr.length - 1)
}
private def sequentialBinarySearch[T](
arr: Array[T],
target: T,
start: Int,
end: Int
)(implicit ord: Ordering[T]): Option[Int] = {
var left = start
var right = end
while (left <= right) {
val mid = left + (right - left) / 2
val midValue = arr(mid)
if (ord.equiv(midValue, target)) return Some(mid)
else if (ord.lt(midValue, target)) left = mid + 1
else right = mid - 1
}
None
}
}
// Test parallel search
val sortedArray = (1 to 1000000).toArray
val searchTarget = 567890
timeOperation("Sequential binary search") {
sortedArray.indexOf(searchTarget)
}
timeOperation("Parallel binary search") {
ParallelSearch.parallelBinarySearch(sortedArray, searchTarget)
}
// Parallel aggregation patterns
object ParallelAggregation {
case class Statistics(count: Long, sum: Double, min: Double, max: Double) {
def mean: Double = if (count > 0) sum / count else 0.0
def combine(other: Statistics): Statistics = {
Statistics(
count + other.count,
sum + other.sum,
math.min(min, other.min),
math.max(max, other.max)
)
}
}
def computeStatistics(data: Vector[Double]): Statistics = {
if (data.isEmpty) {
Statistics(0, 0.0, Double.MaxValue, Double.MinValue)
} else {
data.par.aggregate(Statistics(0, 0.0, Double.MaxValue, Double.MinValue))(
// Sequential operation: combine element with accumulator
(stats, value) => Statistics(
stats.count + 1,
stats.sum + value,
math.min(stats.min, value),
math.max(stats.max, value)
),
// Parallel operation: combine two accumulators
(stats1, stats2) => stats1.combine(stats2)
)
}
}
def parallelGroupStatistics[K](
data: Vector[(K, Double)]
): Map[K, Statistics] = {
data.par
.groupBy(_._1)
.view
.mapValues(pairs => computeStatistics(pairs.map(_._2).toVector))
.toMap
}
}
// Test parallel aggregation
val statisticsData = Vector.fill(100000)(scala.util.Random.nextDouble() * 100)
timeOperation("Parallel statistics computation") {
val stats = ParallelAggregation.computeStatistics(statisticsData)
println(f"Count: ${stats.count}, Mean: ${stats.mean}%.2f, Min: ${stats.min}%.2f, Max: ${stats.max}%.2f")
}
val groupedData = (1 to 50000).map(i =>
(s"Group${i % 10}", scala.util.Random.nextDouble() * 100)
).toVector
timeOperation("Parallel group statistics") {
val groupStats = ParallelAggregation.parallelGroupStatistics(groupedData)
println(s"Computed statistics for ${groupStats.size} groups")
}
Summary
In this lesson, you've mastered parallel collections and data parallelism:
✅ Parallel Basics: Converting collections and basic operations
✅ Configuration: Task support and thread pool management
✅ Performance Analysis: When and how to use parallelization
✅ Guidelines: Identifying good candidates for parallelization
✅ Advanced Patterns: Custom parallel algorithms and aggregations
✅ Best Practices: Avoiding pitfalls and optimizing performance
✅ Real-world Applications: Matrix operations, search, and statistics
Parallel collections provide an easy way to leverage multi-core processors, but understanding when and how to use them effectively is crucial for building high-performance applications.
What's Next
In the next lesson, we'll explore the Actor model and Akka, learning how to build concurrent, distributed systems using message-passing concurrency that scales from single machines to clusters.
Comments
Be the first to comment on this lesson!